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Simplified SUSY models at LHC
Simplified models are (very)
special cases: the produced
SUSY particle goes directly to
it’s SM partner+MET.
Either:

Production needs a gluino
and/or squark in reach.

Or: Very special spectra
EWKinos, sleptons.
3:d gen. squarks.
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Simplified SUSY models at ILC

All is known for given masses, due to
SUSY-principle: “sparticles couples as
particles”.
This doesn’t depend on the SUSY breaking
mechanism !
Obviously: There is one NLSP.
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Simplified SUSY models at ILC

Simplified SUSY models at ILC: But ?

RPV:
If 9 long-lived charged LSP: Even better
If 9 long-lived neutral LSP: same as no RPV.
If LSP intermediate: decays in detector, also better.
If prompt LSP decay: More complex - combinations of �,�0 and �00

constrained by other observations ! lots of cases, with different
signatures. Nevertheless; doable.

Mixed sparticles:
sfermion NLSP: One more parameter. NB: one can’t mix away
e+e� !f̃ f̃ completely: Coupling to Z might vanish, but not to �
(exception: ẽ)
bosino NLSP: Back up one step and evaluate limiting
cross-sections instead.

Very low �(M)
ISR trick.
If E

CMS

>> threshold: boost.
q̃ NLSP: Complicated if �(M) < m

q

, but still known physics of
many-body decays. Open question is R-hadrons.
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Simplified SUSY models at ILC

Simplified SUSY models at ILC: But ?

Degeneracy, ie > 1 NLSP:
No problem for sleptons, sbottom, stop (separable experimentally)

Side remark: Many open channels, ie if SUSY is main background
to SUSY:

When data starts coming in, what is is first light ?
How do we quickly determine a set of approximative model
parameters ?
What is then the optimal use of beam-time in such a scenario ?
And in a staged approach ?
Spectrum in continuum vs. threshold-scans?
Special points, eg. between ⌧̃1⌧̃2 and ⌧̃2⌧̃2 thresholds.
Clean vs. high cross-section.
...
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Simplified SUSY models at ILC

Method

“Parameter” scan:
Scan M

NLSP

� M

LSP

plane.
� from SUSY-principle and kinematics.

Do FullSim in O(a few) points.
Tune FastSim to these.
Then FastSim over a grid.
At each point

Determine expected background and signal
Calculate significance
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Do FullSim in O(a few) points.
Tune FastSim to these.
Then FastSim over a grid.
At each point

Determine expected background and signal
Calculate significanceThen:

If > 5� : the point is within Discovery Reach.
If < 5�, but > 2�: the point is within Exclusion Reach.
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Simplified SUSY In practice: LEP

In practice: LEP

See http: //lepsusy. web.
cern.ch/ lepsusy/
Sleptons ...
Squarks ...
Bosinos ...

These are combined results;
there’s more in the results of the
individual experiments:

Aleph squarks: What if ... ?
Delphi staus: What if ... ?
And so on ....

Mikael Berggren (DESY) Simplified SUSY @ ILC CSS-EF WS, Apr 2013 8 / 16



Simplified SUSY In practice: LEP

In practice: LEP

See http: //lepsusy. web.
cern.ch/ lepsusy/
Sleptons ...
Squarks ...
Bosinos ...

These are combined results;
there’s more in the results of the
individual experiments:

Aleph squarks: What if ... ?
Delphi staus: What if ... ?
And so on .... 0

20

40

60

80

100

50 60 70 80 90 100
Ml (GeV/c

2
)

M
χ 

(G
eV

/c
2
)

R̃

Ml̃ < MχR
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These are combined results;
there’s more in the results of the
individual experiments:

Aleph squarks: What if ... ?
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Simplified SUSY In practice: LEP

In practice: LEP

See http: //lepsusy. web.
cern.ch/ lepsusy/
Sleptons ...
Squarks ...
Bosinos ...

These are combined results;
there’s more in the results of the
individual experiments:

Aleph squarks: What if ... ?
Delphi staus: What if ... ?
And so on ....

Bottom line:
VERY hard to wriggle out of this !
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Some results

Some results

Example from existing FullSim and/or FastSim studies:
Sleptons, some bosinos in a specific point.
Here: ẽ

R

,µ̃
R

,⌧̃1.
Example of the last issue - many open channels.

Use this to
Choose running scenario.
Tune FullSim and FastSim to agree ?

... then start scanning

Mikael Berggren (DESY) Simplified SUSY @ ILC CSS-EF WS, Apr 2013 9 / 16



Some results

ẽR

Early discovery channel:
cross-section in the pb-range.

Few simple cuts.
E

vis

< 400 GeV
(=E

CMS

� 2M�̃0
1
min,LEP

).
2 charged particles
< 40% of E

vis

< below 30
degrees.

Simple observable: E

vis

: Peak
and width gives MẽR

and M�̃0
1
.

See the signal appearing after
1 fb�1

5 fb�1

25 fb�1

100 fb�1

250 fb�1
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and M�̃0
1
.

See the signal appearing after
1 fb�1

5 fb�1

25 fb�1

100 fb�1

250 fb�1

Mikael Berggren (DESY) Simplified SUSY @ ILC CSS-EF WS, Apr 2013 10 / 16



Some results

ẽR
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Some results

ẽR spectrum

So, within months after start-up, we can estimate MẽR
and M�̃0

1
to

within a few GeV.
Use this knowledge for better selection cuts.
Probably, we have also seen the µ̃R.
... and that it has ⇡ the same mass. as the ẽR

Nets step:
Refine cuts for ẽR and µ̃R
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Some results

ẽR spectrum

Refine cuts:
E

vis

< 300 GeV.
M

miss

> 250 GeV.
E below 30 degrees < 10 GeV.
cos ✓

miss

< 0.95.
Exactly two opposite charged
identified e:s.
(E

jet1 + E

jet2) sin ✓
acop

> 21 , <
135 GeV.

Efficiency 52 %
Ejet[GeV]
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Some results

µ̃R spectrum

Same cuts, but ask for two µ:s
instead, ie.:

E
vis

< 300 GeV.
M

miss

> 250 GeV.
E below 30 degrees < 10 GeV.
cos ✓

miss

< 0.95.
Exactly two opposite charged
identified µ:s.
(E

jet1 + E

jet2) sin ✓
acop

> 21 , <
135 GeV.
Note lower cross-section.
SUSY bck is �̃0

1�̃
0
2 ! �̃0

1�̃
0
1µµ.

Efficiency 88 %

Ejet[GeV]
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Some results

⌧̃1 spectrum

E
vis

< 300 GeV.
M

miss

> 250 GeV.
Exactly two opposite charged
jets identified w. mass < 2.5
GeV.
No particle with P > 180 GeV.
(E

jet1 + E

jet2) sin ✓
acop

< 30
GeV.

Efficiency 15 %  [GeV]jetE
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Conclusions and Outlook

Conclusions and Outlook

Simplified methods at hadron and lepton machines are different
beasts.
At lepton machines they are quite model independent, as all
possible NLSP’s can be exploited in a series 2-dim scans
This is exactly what was done at LEP, so the procedure is known.
Now being set up for ILC studies.
Expect to have a rather complete study before the end of the
Snowmass process.
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Conclusions and Outlook

Conclusions and Outlook

Simplified methods at hadron and lepton machines are different
beasts.
At lepton machines they are quite model independent, as all
possible NLSP’s can be exploited in a series 2-dim scans
This is exactly what was done at LEP, so the procedure is known.
Now being set up for ILC studies.
Expect to have a rather complete study before the end of the
Snowmass process.

Work in progress.
Stay tuned.
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Conclusions and Outlook

Thank You !
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A New bench-mark point

Remember, apart from naturalness:
Anomaly in g � 2 of the µ: Would prefer a not-too-heavy smuon.
Dark matter : A WIMP of ⇠ 100 GeV would be required.
EW symmetry breaking, coupling constant unification: points to
NP at or below 1 TeV
Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st &
2:nd generation squarks would be nice ...
Other low-energy constrains : b ! s� , b ! µµ, ⇢-parameter, �(Z )
...
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A New bench-mark point
Remember: Without LHC Sps1a’ is the best fit!
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Can we still get all this with SUSY, without contradicting LHC limits ?!
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New points

Can all this be provided by SUSY ?Yes, sure !

Take old ILC favourite benchmark SPS1a, and make the TDR4 point
(see Baer&List arXiv:1205.6929v1

SPS1a: mSUGRA
5 parameters.
One gaugino parameter
One scalar parameter

TDR4: Phenomenological
SUSY

11 parameters.
Separate gluino
Higgs, un-coloured, and
coloured scalar
parameters separate

Parameters chosen to deliver all constraints,⇡ same ILC accessible
spectrum ) old analyses still valid !



Features of TDR 4

The ⌧̃1 is the NLSP.
For ⌧̃1: Small �

M

, �� -
background
For ⌧̃2: WW ! l⌫l⌫ -
background ,
Polarisation.
⌧̃ NLSP ! ⌧ :s in most
SUSY decays ! SUSY is
background to SUSY.
For pol=(-1,1): �(�̃0

2�̃
0
2)

and �(�̃+
1 �̃

�
1 ) = several

hundred fb and
BR(X! ⌧̃) > 50 %. For
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Differences TDR4 - SPS1a’

0

50

100

150

200

250

300

350

sps1ap TDR4

M
a

ss
 (

G
e

V
)

All bosinos
M

h

OK
˜̀
L

! �̃0
0` at 30-40 % BR.

�̃0
4 and �̃±

2 too heavy
M

h

too small
˜̀
L

! �̃0
0` at ⇠ 95 % BR.



Differences TDR4 - SPS1a’

0

50

100

150

200

250

300

350

sps1ap TDR4

M
a

ss
 (

G
e

V
)

All bosinos
M

h

OK
˜̀
L

! �̃0
0` at 30-40 % BR.

�̃0
4 and �̃±

2 too heavy
M

h

too small
˜̀
L

! �̃0
0` at ⇠ 95 % BR.



Differences TDR4 - SPS1a’

0

50

100

150

200

250

300

350

sps1ap TDR4

M
a

ss
 (

G
e

V
)

All bosinos
M

h

OK
˜̀
L

! �̃0
0` at 30-40 % BR.

�̃0
4 and �̃±

2 too heavy
M

h

too small
˜̀
L

! �̃0
0` at ⇠ 95 % BR.



Differences TDR4 - SPS1a’

0

50

100

150

200

250

300

350

sps1ap TDR4

M
a

ss
 (

G
e

V
)

All bosinos
M

h

OK
˜̀
L

! �̃0
0` at 30-40 % BR.

�̃0
4 and �̃±

2 too heavy
M

h

too small
˜̀
L

! �̃0
0` at ⇠ 95 % BR.

Bottom line
Even more open channels

More complicated topologies
We plan to check how close TDR4 is to the “best fit” (with fittino



Analysis

Disclaimer
Very preliminary
Mostly taken over SPS1a’ analyses: Guaranteed to have bad
efficiency for heavier states, due to the increase of cascade
decays (mostly ignored in Sps1a’)

Take over SPS1a’ (Phys.Rev.D82:055016,2010, Nicola’s thesis,...)



Lighter sleptons

Use the polarisation (0.8,-0.3) of the data to reduce bosino
background. Assumed to be 50 % of all data.

From decay kinematics:
m˜̀ and M�̃0

1
and end-points of spectrum = E`,min(max).

For ⌧̃1: other end-point hidden in �� background:Must get M�̃0
1

from other sources. (µ̃ , ẽ, ...)
m˜̀ also from cross-section:

�˜̀= A(✓˜̀,P
beam

)⇥ �3/s, so
m˜̀= E

beam

p
1 � (�s/A)2/3: no M�̃0

1
!

From decay spectra:
P⌧ from exclusive decay-mode(s): handle on mixing angles ✓⌧̃
and ✓

�̃0
1



Topology selection

Take over SPS1a’ ⌧̃ analysis principle
˜̀properties:

Only two particles (possibly
⌧ :s:s) in the final state.
Large missing energy and
momentum.
High Acolinearity, with little
correlation to the energy of the
⌧ decay-products.
Central production.
No forward-backward
asymmetry.

+ anti �� cuts (see backup)

Select this by:
Exactly two jets.
N

ch

< 10
Vanishing total charge.
Charge of each jet = ± 1,
M

jet

< 2:5 GeV/c2,
E

vis

significantly less than
E

CMS

.
M

miss

significantly less than
M

CMS

.
No particle with momentum
close to E

beam
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µ̃R threshold scan

From these spectra, we can
estimate MẽR

, Mµ̃R
and M�̃0

1
to <

1 GeV.

So: Next step is Mµ̃R
from

threshold:
10 points, 10 fb�1/point.
Luminosity / E

CMS

, so this is
, 170 fb�1 @ E

CMS

=500 GeV.

Error on Mµ̃R
= 197 Mev
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µ̃R threshold scan
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, Mµ̃R
and M�̃0

1
to <

1 GeV.

So: Next step is Mµ̃R
from

threshold:
10 points, 10 fb�1/point.
Luminosity / E

CMS

, so this is
, 170 fb�1 @ E

CMS

=500 GeV.

Error on Mµ̃R
= 197 Mev 0

1

2

3

4

5

6

7

8

9

272 274 276 278 280 282
√s [GeV]

σ
(e

+
e

- →
µ̃ R

µ̃ R
) 

[f
b

]

data 10 fb-1 / point

fit to data : δMµ̃ = 197 MeV

Mµ̃ =  135.4 ± 0.2 GeV

Mµ̃ =  135.28 GeV



µ̃R threshold scan

From these spectra, we can
estimate MẽR
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⌧̃1 (SPS1a’)

E
vis

< 300 GeV.
M

miss

> 250 GeV.
Exactly two opposite charged
jets identified w. mass < 2.5
GeV.
No particle with P > 180 GeV.
(E

jet1 + E

jet2) sin ✓
acop

< 30
GeV.

Efficiency 15 %
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Fitting the ⌧̃1 mass (SPS1a’)

Only the upper end-point is
relevant.
Background subtraction:

Important SUSY
background,but region
above 45 GeV is signal free.
Fit exponential and
extrapolate.

Fit line to (data-background
fit).
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Background subtraction:
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Results from cross-section for ⌧̃1

�(N
signal

)/N

signal

= 3.1% ! �(M⌧̃1
) = 3.2GeV/c

2



First look at Heavier sleptons (µ̃L)

Remember
demanding exactly 2 objects kills 90 % of the signal in TDR4, due to
cascaded decays !

Same cuts as for µ̃R, and
anti-WW likelihood, take
over from SPS1a’
select using other particle:
p(other µ) > 120 GeV.

Efficiency 1.5 % (!), S/B = 0.2.
S/

p
B=5.0 for LR,

S/
p

B=2.8 for RL.
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First look at Heavier sleptons (µ̃L)

Remember
demanding exactly 2 objects kills 90 % of the signal in TDR4, due to
cascaded decays !
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